
Written by: Nigel Kitcher

ÿ���Engine Test Data Collation and
Reporting Database Package
developed
For BICERI Ltd
(abridged)

Table of Contents
Page

1. PROJECT SPECIFICATION AND TECHNICAL OVERVIEW OF SOLUTION1-1

1.1 PROJECTOVERVIEW ...1-1
1.2 OBJECTIVES..1-1
1.3 TECHNICAL OVERVIEW OF SOLUTION...1-1

2. USER MANUAL...2-1

2.1 BUILDING A REPORT..2-1
2.2 HANDLING A PREVIOUSLY GENERATED REPORT..2-1
2.3 REPORTBUILDING ..2-3
2.4 ERRORS DURINGREPORT BUILDING...2-3

3. USING THE REPORTING SYSTEM DATABASE ..3-1

3.1 OVERVIEW OFDATABASE ...3-1
3.2 ADDING JOBS TO THE DATABASE...3-1
3.3 ENTERING/AMENDING JOB SPECIFIC DATA...3-1
3.4 CUSTOMERMAINTENANCE ...3-1
3.5 TESTMAINTENANCE...3-2
3.6 RUN NUMBER MAINTENANCE ...3-2
3.7 TIPS AND SHORTCUTS..3-3

4. THE MERCEDES M102E DATA ENTRY ..4-1

4.1 VALVE RATING ENTRY ...4-1

5. INTELLIGENT DOCUMENTS ...5-1

5.1 OVERVIEW ...5-1
5.2 PURPOSE OF DOCUMENT INTELLIGENCE...5-1

6. THE COVERING LETTER WRITING SYSTEM ...6-1

6.1 OVERVIEW ...6-1
6.2 USING THELETTERWRITER..6-1

7. REPORTING DIRECTORY STRUCTURE ...7-1

8. ISSUE CONTROLLER..8-1

8.1 OVERVIEW OF ISSUES..8-1
8.2 AUTOMATIC HANDLING OF ISSUE NUMBERS...8-1
8.3 MANUALLY HANDLING ISSUE NUMBERS...8-1

9. SOURCE CODE...9-1

9.1 NORMAL.DOT (SQL) ..9-2
9.2 NORMAL.DOT (LIBRARY)..9-6
9.3 NORMAL.DOT (GETDATAFROMDATABASE) ..9-10

Table of Figures
Page

Figure 1 - Part of the Report Generator database Schema..1-2
Figure 2 - Job Number Entry Dialog Box ...2-1
Figure 3 - Dialog when a report already exists ..2-1
Figure 4 - Option to scratch report and start again...2-1
Figure 5 - Failure to delete existing report ..2-2
Figure 6 - Report has been opened elsewhere ...2-2
Figure 7 - Opening documents outside of the reporting system..2-2
Figure 8 - Option to increment the issue number...2-2
Figure 9 - Report type selection dialog box...2-3
Figure 10 - Dialog box for completed report...2-3
Figure 11 - Error message for missing information ...2-3
Figure 12 - Error message when report already exists ...2-4
Figure 13 - "Star Bright" Main Database opening screen...3-1
Figure 14 - The Enter New Job(s) Dialog ...3-1
Figure 15 - Customer and date information Dialog Box ..3-1
Figure 16 - The Maintenance dialog for M102E IVD Jobs ..3-1
Figure 17 - The Customer Maintenance Dialog box ..3-1
Figure 18 - The Test Maintenance Dialog box ..3-2
Figure 19 - The Run Number Maintenance Dialog box ...3-2
Figure 20 - M102E valve rating entry dialog box..4-1
Figure 21 - M102E Valve Weight Entry...4-1
Figure 22 - The Intelligence Control Dialog box...5-1
Figure 23 - Letter Writer Job Number Entry Dialog..6-1
Figure 24 - Additional Job Selection...6-1
Figure 25 - Number of Report Copies Entry ...6-1
Figure 26 - Option to print letter immediately...6-2
Figure 27 - Directory (Folder) Structure under Windows '95/NT...7-1
Figure 28 - Document History Control Dialog box ...8-1
Figure 29 - Message box when document has no issue control ..8-1

http://www.nkitcher.co.uk/ Project specification and technical overview of solution 1-1

1. Project specification and technical overview of solution

1.1 Project Overview
The Report Generator System had been attempted as a solution at BICERI on a number of different
occasions. The most successful that being a system that ran on a Perkin-Elmer mini computer in the
1980s. This system was designed specifically for the needs of a single large OEM customer. With the
move to the Lubricant and Fuels market in the late 1980s, together with the introduction of the "cheap"
IBM PC, an alternative was required for these changes.

In 1994 the solution presented in here in summary was initiated, and within 2 years became the
corporate system for producing all Lubricant and Fuels test reports, and finally became the hub of all
the company databases held on the network.

1.2 Objectives
• To de-skill the job of report production . This enabled the engineers to be do what they were

supposed to be doing i.e. engineering. It also permitted the spreading of work load as a report
could easy be produced by anyone and only required the engineer for final approval.

• To produce consistent documentation.Reports were visually inconsistent between
engineers and even a single engineers reports in the early days as there were no common
application usage with engineers using whichever package they had become used to using.

• To reduce errors in reports. As each engineer has developed his own spreadsheets and
macros to produce a report errors have arisen due to the lack of information when it is
necessary for someone to produce a report (e.g. where macros don't quite work properly or
need a special set up prior to running)

• To provide information to those who require it. Biceri made a living not by running
engines but by producing information. This information is frequently lacking in areas of the
company where was needed. For example the Sales team did not have access to any statistical
data arising from tests as there was no central repository of data.

• To meet the objectives as defined in the Quality procedures. Reports did not meet
NAMAS standards: no issue number and issue date on every page, rating methods not defined
to a standard, no calibration dates for test equipment etc. With a vast array of report
"templates" amending each and every one would have been an monumental task.

1.3 Technical overview of s olution
The core to system is several ODBC database, which were implemented at the time using Access.
Other database backends were considered including Dbase and SuperBase. The decision to implement
using Access was made by the fact that it was considered easier to “upsize” to SQL Server when it
became appropriate. The availability of ODBC was also a consideration as the MS Office suite, plus
third party packages had to be able to communicate with the system.

Job numbers are accessed by the system via linked tables, which exist in the accounts package. A
number of these tables are used by the timesheet application which a Visual Basic application available
on all company PCs and is used by all staff.

The creation of a job on the system results in the creation of many records through out many tables.
Population of data within these records comes from a wide range of sources including automated
engine test bed controllers and loggers, smoke meters and manual raters.

To create the customer report a suite of WordBASIC routines connect to the data source, retrieve the
data relevant to the requested job, and populate the appropriate Word template with the data.

An engineer simply entering the job number when prompted can produce a report. The rest of the
process is fully automated. Reports can be produced at any time during a test and the engineer is
prompted if the report already exists so that “refreshing” of a partially completed report is possible.

http://www.nkitcher.co.uk/ Project specification and technical overview of solution 1-2

The functionality of the Word File Save routines has been extended to include “Intelligent Documents”
so that any documents produced by a user is automatically placed in the correct folder in the directory
structure designed around the format of the job number. This eases use of Word and also ensures that
documents are not misfiled in the wrong folder.

Figure 1 - Part of the Report Generator database Schema

http://www.nkitcher.co.uk/ User Manual 2-1

2. User Manual

2.1 Building a report
All jobs are entered into the Access database. At this point the directory structure is created as shown in
section on page 7-1.

The directory structure is used to check whether a job has been entered into the system at the initial
point of report creation in Word (for performance reasons). However, if the directories have been
created, illegally, by hand the Word code will alert the user when it can not find the appropriate data in
the database tables.

The job number entry dialog box performs many validations and permits the job number to be entered
in upper or lower case (converting it to upper if necessary), and the run number can be entered as one,
two or three digits i.e. run number 3 may be entered as 3, 03, or 003. The run number is padded out to
three numerics in all cases. The dividing character between the test Id and the run number may be any
non-alphanumeric i.e. it will accept “/”, “-“, etc.

Figure 2 - Job Number Entry Dialog Box

2.2 Handling a p reviously gen erated report
If a report already exists for the requested job number the dialog shown in Figure 3 appears. Selecting
Yes will open the existing report and refresh ALL values in the report. Selecting No will present the
user with the option of deleting the existing report and starting again (see Figure 4).

Figure 3 - Dialog when a report already exists

Figure 4 - Option to scratch report and start again

http://www.nkitcher.co.uk/ User Manual 2-2

If the existing report can not be deleted, for example if it is already open some where else then the
message box shown in Figure 5 appears. This aborts the reporting system.

Figure 5 - Failure to delete existing report

Note: Selecting YES at the first dialog allows the user to generate a subsequent issue of the
report. Choosing NO at the first and YES at the second allows the user to re-generate an issue #1.

If the user selects to open an existing file, but the file can not be opened because it already opened, for
editing, elsewhere the dialog shown in Figure 6 appears. If Cancel is chosen the reporting system ends.

Figure 6 - Report has been opened elsewhere

Note: Documents are saved as “Recommended Read Only”. If a report is opened outside of the
reporting system the dialog shown in Figure 7 appears. Editing a document directly may create
problems later if the reporting system is used to refresh the document. You should always open
report files in Read-Only mode to maintain integrity and allow other users access to the
document.

Figure 7 - Opening documents outside of the reporting system

If a report has previously been written and the user has chosen the option of opening the report and
refreshing the data a dialog similar to Figure 8 appears offering the choice of maintaining the present
issue number or automatically incrementing it.

Figure 8 - Option to increment the issue number

http://www.nkitcher.co.uk/ User Manual 2-3

As the Biceri test ID is not unique to an individual type of report the dialog box shown in Figure 9 will
appear if there is more than one report format. In this case the dialog is prompting for reports for test
type 214.

Figure 9 - Report type selection dialog box

Note: the text for this dialog box comes from the TEMPLATE.INI file - see sectionError!
Reference source not found..

2.3 Report Building
Once the job number, and optionally the type of report, has been entered the process of generating the
report is automatic. The status of the process can be seen at the bottom of the screen in the status bar
and should proceed in a manner similar to the following (test dependant):

• Connecting to database…
• Building SQL Select statement…
• Waiting for database transaction...
• Obtaining field names… retrieved (n)
• Building Report... FieldsInserted (n)
• Closing connection to database...
• File … saved to disk
• Done.

When the report has been completed and the document saved in the correct directory the dialog box
shown in Figure 10 will appear.

Figure 10 - Dialog box for completed report

2.4 Errors during Report building
During the report building phase a message box similar to one shown in Figure 11 will appear when an
item of required information is missing. Choosing Ignore will just ignore the one item and still prompt
for each subsequent missing item, whereas Ignore All will not prompt on subsequent missing
information. Choosing Abort Report will halt report production.

Figure 11 - Error message for missing information

http://www.nkitcher.co.uk/ User Manual 2-4

If a report is being recreated then the document will already exist in the correct directory. As the
reporting system can not overwrite the file (it could be opened elsewhere on the network) the message
box shown in Figure 12 will appear. If you know that it is safe to save the file then you may do so
however this version will be outside of the reporting system.

Figure 12 - Error message when report already exists

NOTE: Reports should not be recreated by simply choosing create report a second time. The
report document should be opened and then create report should be chosen.

http://www.nkitcher.co.uk/ Using the Reporting System Database 3-1

3. Using the Reporting System Database

3.1 Overview of Database
The terminology of the database is as follows: Tests are tests offered by the company, Jobs are specific
instances of a test.

Figure 13 - "Star Bright" Main Database opening screen

3.2 Adding Jobs to the database
Jobs are added to the system via the “Add Job” menu option under “Maintenance”.

The user is then presented with the dialog shown in Figure 14 - The Enter New Job(s) Dialog. To enter
a new job or jobs the customer and test type must be selected from the drop down lists. After these
have been selected the job number that will be allocated is displayed at the bottom of the dialog box. If
the user wishes to add more than one job then the “quantity of tests” should be changed in the edit box.
In this case the range of job numbers to be allocated is then displayed.

Selecting “OK” will start the process of creating entries for the chosen job(s). Part of this process is the
construction of the directory structure for the reporting system (see

http://www.nkitcher.co.uk/ Using the Reporting System Database 3-1

Reporting Directory Structure on page 7-1).

Figure 14 - The Enter New Job(s) Dialog

3.3 Entering/ Amending Job Specific data
At the time a job is created by the system a number of fields are automatically set to predetermined
defaults as follows:

Bed This is set the preferred bed for the given test type1

Engineer Set thePreferred_Engineer entry as listed in the table Tests.

Order Date Set to the current date (when job is created in system)

To ease inputting of dates into the system the user may use the CTRL+D key combination to insert the
current date into a date field.

Note that the following information is automatically updated by other components in the system:

Reporting: Written This date is updated by the system when a report has been created via the
“Report Builder” in Microsoft Word (see 2.3 Report Building on page 2-3)

Reporting: Dispatch This date is updated by the system when a covering letter is created via the
“Letter Writer” in Microsoft Word (see 5

1 This is held in the database table tBedTest. At the time of writing this table is not readily available to
average user.

http://www.nkitcher.co.uk/ Using the Reporting System Database 3-1

The Covering letter writing system on page 6-1)

Figure 15 - Customer and date information Dialog Box

Figure 16 - The Maintenance dialog for M102E IVD Jobs

3.4 Customer Maintenance
Customer information can be amended in the customer maintenance dialog box (see Figure 17).

To add a customer select the “Add” button.

Figure 17 - The Customer Maintenance Dialog box

http://www.nkitcher.co.uk/ Using the Reporting System Database 3-2

NOTE: The entry labelled “Folder name” is the directory name used for this customer. After
migration to Windows’95 and long file names, this entry will no longer be applicable as the full
customer name will used instead.

3.5 Test Maintenance
Test information can be amended in the test maintenance dialog box (see Figure 18).

To add a test select the “Add” button.

Figure 18 - The Test Maintenance Dialog box

3.6 Run Number Maintenance
The system keeps a note of which run or sequence numbers have been already been allocated for each
combination of CustomerandTest type. If for any reason the next run number is required to be
different it may be manually adjusted in the run number maintenance dialog box (see Figure 19).

First select the customer/test combination in the “Select Job Num” drop down list and then type the
next required run number. It should be noted that entries for an unused customer/test combination will
not exist until at least one job has been run. Hence it is not possible to start a sequence from a number
other than “1” until a job has been added.

Figure 19 - The Run Number Maintenance Dialog box

http://www.nkitcher.co.uk/ Using the Reporting System Database 3-3

NOTE: THIS SHOULD BE USED WITH EXTREME CARE AND ONLY UNDER THE
GUIDANCE OF THE I.T. DEPARTMENT AS CHANGING THE NEXT RUN NUMBER MAY
CAUSE DATA INTEGRITY ERRORS.

3.7 Tips and shortcuts
The following is a list of tips and shortcuts to aid inputting of data:

• To ease inputting of dates into the system the user may use the CTRL+D key combination to insert
the current date into a date field.

• The action of the [ENTER] key may be adjusted through the state of the [SCROLL LOCK] key for
tabular forms. With the [SCROLL LOCK] key is down pressing [ENTER] will move the cursor to
the next cell downwards. With [SCROLL LOCK] key off pressing [ENTER] will move the cursor
to the next cell to the right.

• Where an edit box on a form is not large enough to display all of the contents of the field use
[SHIFT]+[F2] to bring up the zoom box.

http://www.nkitcher.co.uk/ The Mercedes M102E Data Entry 4-1

4. The Mercedes M102E Data Entry

4.1 Valve Rating Entry
The M102E valve rating entry screen is shown in Figure 20. To select the appropriate entry sheet
choose the required job number, valve number and phase from the drop down lists at the top of the
screen. The cursor may be moved around the screen by use of the arrow keys.

The use of the [ENTER] key may be adjusted through the state of the [SCROLL LOCK] key. With the
[SCROLL LOCK] key is down pressing [ENTER] will move the cursor to the next cell downwards.
With [SCROLL LOCK] key off pressing [ENTER] will move the cursor to the next cell to the right.

Figure 20 - M102E valve rating entry dialog box

Whilst entering a number into a cell the left and right arrow keys will not move to cursor to a
new cell - in this case use the ENTER key to move the cursor to the next cell or use the up and
down arrow keys.

A number of calculated items are placed around the entry table.

To the right of the table is the sum of each segment shown as a red number. When the total equals 10
the number will disappear.

At the bottom of each merit column is the total of the column, and the merit. The total merit for the
current valve is also displayed.

The total for each segment is re-calculated each time a number is entered. However the sums for
the columns, and the merit are only calculated once a complete segment has been entered. As
such once the final number has been entered for the final segment the cursor must be moved to
different segment for the calculations to take place.

Figure 21 - M102E Valve Weight Entry

http://www.nkitcher.co.uk/ The Mercedes M102E Data Entry 4-2

http://www.nkitcher.co.uk/ Intelligent Documents 5-1

5. Intelligent Documents

5.1 Overview
The “Star Bright” package extends the functionality of Microsoft Word via a process named
“Intelligent Documents”. As documents are created by the reporting system the documents are labelled
with the relevant job number and information as to the type of document. This intelligence may be
overridden or adjusted at a later date by use of the “Intelligence” button on the “Star Bright Toolbar”.

5.2 Purpose of document intelligence
As documents maintain some sort of intelligence they can aid the general usage. This is most notably
when performing a FILE/SAVE AS. At this point the document adjusts the default folder so that the
user does not have to navigate the file structure to find the relevant folder.

Figure 22 - The Intelligence Control Dialog box

http://www.nkitcher.co.uk/ The Covering letter writing system 6-1

6. The Covering letter writing system

6.1 Overview
The “Star Bright” reporting package includes the facility to produce a cover letter for one or more
report(s). This facility extracts the customer and test information for a given job or jobs and inserts
them into the body text of the letter. Once it is complete the system writes it the file to the appropriate
directory and offers the user the chose of printing immediately.

6.2 Using the Letter Writer
To start the letter chose the “Write Letter” button on the “Star Bright Reporting” toolbar (alternatively
choose FILE/NEW and “Report Covering Letter”). A dialog box similar to the one in Figure 23 will
appear and prompt for the required job number. If you wish to write a letter covering more than one
report you should enter the job number with the lowest run number.

Figure 23 - Letter Writer Job Number Entry Dialog

On choosing OK the system will check if there are any reports of that test type, for that customer that
have higher run numbers than the one entered. If there are, a dialog similar to Figure 24 will appear to
allow selection of additional jobs. The job first entered will appear already in the right hand list box
which is for those jobs to be included in the letter. Select additional job numbers in the left hand list
box and chose “>” to include them. To exclude jobs select them in the right hand side and chose “<”.

Figure 24 - Additional Job Selection

Once the job(s) have been entered the user will be prompted (see Figure 25) to enter the number of
copies of the report which will be sent with the letter. Valid numbers are between 1 and 10.

Figure 25 - Number of Report Copies Entry

http://www.nkitcher.co.uk/ The Covering letter writing system 6-2

All the information required by the system has then been entered and a letter will be automatically
produced with the correct information regarding the customer, the test type, each job(s) and the number
of copies which will accompany the letter.

The letter will saved in the directory relating to the first job number. The last message given to the user
allows them to print the letter immediately.

Figure 26 - Option to print letter immediately

Once the letter has been created the dispatch date for the report is automatically updated to the
current date.

http://www.nkitcher.co.uk/ Reporting Directory Structure 7-1

7. Reporting Directory Structure

The customer name is shortened to eight characters and the Biceri customer id is used as the extension.
Under each customer each test name is also shortened to eight characters and the Biceri test id used as
the extension. The run number is then simply used as the last directory name.

Figure 27 - Directory (Folder) Structure under Windows '95/NT

This method allows anyone given a job number to easy find the files for the job by simply taking each
part of the id (which is the extension), or the description (base directory name).

For additional info rmation see section 5.2 of Biceri Information Management Plan
dated March 95

http://www.nkitcher.co.uk/ Issue Controller 8-1

8. Issue Controller

8.1 Overview of issues
All documents created by the reporting system contain a limited amount of issue control. The issue
control keeps track of the date of issue changes, the initials of the person making the change and a user
comment.

8.2 Automatic handling of issue numbers
When a test report is created by the reporting system the issue number is automatically set to one, the
date is set to the current date, the users initials are logged, and the comment set to “Created by
Reporting System”. If the document contains abookmark named “Issue” then the text at that location is
automatically set to read “1”. As the issue number is incremented the text at thebookmark will be
automatically incremented.

8.3 Manually handling issue numbers
To increment the issue number you must type a comment in the “New issue” edit box, and then choose
Add. Note that by default the issue number is not incremented. To do this the user must first check the
“Increment Issue” check box. When the issue number is incremented the text at the bookmark “Issue”
(if it exists) is automatically incremented.

If a document does not contain the required issue controlling additions the message box shown in
Figure 29 appears. Choosing “YES” will make the required amendments.

Figure 28 - Document History Control Dialog box

Figure 29 - Message box when document has no issue control

http://www.nkitcher.co.uk/ Source Code 9-1

9. Source Code

http://www.nkitcher.co.uk/ Source Code 9-2

9.1 NORMAL.DOT (SQL)

'**
'* SQL ROUTINES
'* These are tried And tested routines. Note that in
'* coordance With Q48115 variable names have been kept
'* to minimum length, And no remarks exist in the Function
'* to provide maximum speed
'*
'* Note: The entire UNC name must be used in declares to the
'* Word add-in library As it would Not have been loaded at this
'* time If called via a macro at start-up
'*
'**

Declare Function SQLExecQuery Lib "\\SERVER\DATABASE\WBODBC.WLL"(c As Integer , q As String) As
Integer
Declare Function SQLCountErrors Lib "\\SERVER\DATABASE\WBODBC.WLL"() As Integer
Declare Function SQLErrorText$ Lib "\\SERVER\DATABASE\WBODBC.WLL"(e As Integer) As String
Declare Function SQLErrorClass$ Lib "\\SERVER\DATABASE\WBODBC.WLL"(e As Integer) As String
Declare Function SQLErrorCode Lib "\\SERVER\DATABASE\WBODBC.WLL"(e As Integer) As Integer
Declare Function SQLOpen Lib "\\SERVER\DATABASE\WBODBC.WLL"(c As String , o As String , p As Integer)
As Integer
Declare Function SQLGetSchema Lib "\\SERVER\DATABASE\WBODBC.WLL"(c As Integer , t As Integer , q As
String) As Integer
Declare Function SQLGetSchemaItem$ Lib "\\SERVER\DATABASE\WBODBC.WLL"(c As Integer , i As Integer) As
String
Declare Function SQLCloseAll Lib "\\SERVER\DATABASE\WBODBC.WLL"() As Integer
Declare Function SQLClose Lib "\\SERVER\DATABASE\WBODBC.WLL"(c As Integer) As Integer
Declare Function SQLRetrieveRows Lib "\\SERVER\DATABASE\WBODBC.WLL"(cn As Integer) As Integer
Declare Function SQLRetrieveColumns Lib "\\SERVER\DATABASE\WBODBC.WLL"(cn As Integer) As Integer
Declare Function SQLRetrieveItem$ Lib "\\SERVER\DATABASE\WBODBC.WLL"(cn As Integer , col As Integer ,
row As Integer) As String

'**
'* Parse SQL Errors And display in Message Boxes
'**

Sub ParseErrors(b$)
n = SQLCountErrors
For i = 1 To n

m$ = "Class(" + SQLErrorClass$(i) + ") "
m$ = m$ + "Code(" + Str$(SQLErrorCode(i)) + ")" + Chr$(13)
m$ = m$ + SQLErrorText$(i)
If (SQLErrorCode(i) = - 1305) Then

m$ = "Attempt to extract spurious data. "
m$ = m$ + Chr$(13) + Chr$(13) + "This report Is requestin g " + Chr$(34) + b$ +

Chr$(34) + " data "
m$ = m$ + "although this test does Not require that "
m$ = m$ + " information. Please remove bookmarks pertaining "
m$ = m$ + " to " + Chr$(34) + b$ + Chr$(34) + "."
MsgBox m$, "SQL Error", 48

Else
MsgBox m$, "SQL Error", 16

End If
Next
End Sub

'**
'* Connects to a DBMS returning connection code
'* This calls ParseErrors If there any any
'**

Function ConnectToDBMS(o$)
Print "Connecting to database..."
ConnectToDBMS = SQLOpen(o$, r$, 4)
End Function

'**
'* Closes connection to DBMS
'**

Function CloseDBMS(cn)
Print "Closing connection to database..."
CloseDBMS = SQLClose(cn)
End Function

http://www.nkitcher.co.uk/ Source Code 9-3

'**
'* Closes all connections to DBMS
'**

Sub CloseAllDBMS
SQLCloseAll
End Sub

'**
'* Execute And wait For transaction to be completed
'**

Function WaitForTransaction(cn, s$)
Print "Waiting For database transaction..."
r = - 2
While (r = - 2)

r = SQLExecQuery(cn, s$)
Wend
WaitForTransaction = r
End Function

'**
'* Retrieve the number of rows And columns
'* Returns True If there are more than one row And col
'**

Function RetrieveNumberOfRowsCol(cn, r, c)
r = SQLRetrieveRows(cn)
c = SQLRetrieveColumns(cn)
RetrieveNumberOfRowsCol = (r > 0) And (c > 0)
End Function

'**
'* Retrieve an item from a database
'**

Function RetrieveItem$(cn, c, r)
RetrieveItem$ = SQLRetrieveItem$(cn, c, r)
End Function

'**
'* Get todays Date in valid format For SQL
'**
Function LTrimStr$(n)
LTrimStr$ = LTrim$(Str$(n))
End Function

Function GetSQLDate$
GetSQLDate$ = "#" + LTrimStr$(Month(Now())) + "/" + LTrimStr$(Day(Now())) + "/" +
LTRimStr$(Year(Now()) - 1900) + "#"
End Function
'**
'* Update the JOBS table to say that a report has been
'* written For a given job (Date Is in MM/DD/YY)
'* Note that this presently only sets the Date Not the Boolean!
'**

Function UpdateJobDate(cn, j$, dbf$)
Print "Building SQL update statement..."
cID$ = Library.ExtractCustomerID$(j$)
tID$ = Library.ExtractTestID$(j$)
rn$ = Library.ExtractRunNumber$(j$)

s$ = "UPDATE DISTINCTROW Jobs SET Jobs." + dbf $ + " = "
s$ = s$ + GetSQLDate $ + " WHERE"
s$ = s$ + "((Jobs.Customer_ID='" + cID$ + "') "
s$ = s$ + "AND (Jobs.Test_ID=" + tID$ + ") "
s$ = s$ + "AND (Jobs.Run_Number=" + LTrimStr$(Val(rn$)) + "));"

UpdateJobDate = WaitForTransaction(cn, s$)
End Function

'**
'*
'* Gets the unique columns headings (into h$) from a
'* number of tables (t$) For a SQL connection (cn)
'* returns 0 (FALSE) If Error

http://www.nkitcher.co.uk/ Source Code 9-4

'*
'**

Function GetUniqueColumnsFromTables(cn, t$(), h$())
Print "Obtaining field names..."
r = 1
i = 1
j = 1
While ((t$(j) <> "") And (r > 0))

r = SQLGetSchema(cn, 5, t$(j))
If r <= 0 Then

ParseErrors
Else

For k = 1 To r Step 2
a$ = SQLGetSchemaItem$(cn, k)
'*** The following couple of lines are VERY IMPORTANT!
'*** They make sure that a field Is Not held twice
m = 1
While ((m < i) And (h$(m) <> a$))

m = m + 1
Wend
If (h$(m) <> a$) Then h$(i) = a$
i = i + 1
Print "Obtaining field names... retrieved (" + Mid$(Str$(i), 2) + ")"

Next
j = j + 1

End If
Wend
GetUniqueColumnsFromTables = (r > 0)
End Function

'**
'*
'* Query the given database connection, get the data
'* And insert it at the appropriate positions
'*
'* Returns: TRUE - OK, continue
'* FALSE - Something nasty happened so stop
'*
'**
Function GetAndInsertData(con_num, con_num_hdgs, s$, Tbl$(), comment$, bIgnore, Job$, title$)

'* Execute the SQL Select command
TRUE = (1 = 1)
FALSE = Not(TRUE)

bAbort = FALSE

ret = WaitForTransaction(con_num, s$)

NumColumns = ret

If ret <= 0 Then
MsgBox "QUIT" :
ParseErrors :
bAbort = TRUE :
Goto EndFunction

End If

'**
'* Get names of the columns For the tables we are going to use
'**

Redim ColumnArray$(NumColumns)
Redim FieldValue$(NumColumns)

If (Not GetUniqueColumnsFromTables(con_num_hdgs, Tbl$(), ColumnArray$())) Then bAbort = TRUE : Goto
EndFunction

ret = RetrieveNumberOfRowsCol(con_num, rows, cols)

If (rows < 1) Then
a$ = "There Is a problem retrieving data from one of the tables For this job number (" +

Job$ + ")." + Chr$(13) + "The most likely cause Is that the job has Not been registered into the
system using MS Access."

MsgBox a$, title$, 16

http://www.nkitcher.co.uk/ Source Code 9-5

bAbort = TRUE

Goto EndFunction :

End If

'**
'* Interrogate database For the real data And put it in
'* the correct place
'**

r = 1

NumInserted = 0
Print comment$ + ": Fields Inserted (0)"

'bIgnore = FALSE

c = 1
While (c <= cols) And (bAbort = FALSE)

item$ = RetrieveItem$(con_num, c, r)
item$ = RTrim$(item$)

'**
'* Formatting does Not appear to be taken from Access
'* so we convert any Date And time strings
If (Left$(ColumnArray$(c), 3) = "dtm") Then

item$ = Library.ConvertMSAccessDate$(item$)
End If
'**

FieldValue$(c) = item$

If ExistingBookmark(ColumnArray$(c)) Then
'*** If there Is a place holder For this field Then go to it
'*** And fill it in
'*** Note the item$ MUST be tidied up using RTRIM$() Function
'*** The "EditClear" Is required to delete the initial
'*** bookmark holder ie. the space

If item$ <> "" Then

Library.InsertAtBookmark(ColumnArray$(c), item$)

NumInserted = NumInserted + 1
Print comment$ + ": Fields Inserted (" + Mid$(Str$(NumInserted), 2) + ")"

ElseIf (Not bIgnore) Then
'** Inform user that field in database Is blank
'** but that the template requires it.

a$ = "No data exists in the database For th e " + ColumnArray$(c) + "." +
Chr$(13) + "The report will be created but will be incomplete And should be re-created after
correcting the problem"

Select Case Dialogs.DataMissingDialog(title$, a$)
Case 1
Case 2

bIgnore = TRUE
Case Else

bAbort = TRUE
End Select

End If
End If
c = c + 1

Wend

EndFunction:

GetAndInsertData = (bAbort)

End Function

'**

http://www.nkitcher.co.uk/ Source Code 9-6

'* Insert the data from a multi-row selection into a Word
'* table (tbl$). Insert Zero values If b=True
'* n - Is column to start at (zero based)
'* d - Is number of decimal places (column array)
'*
'* Returns: TRUE - OK, continue
'* FALSE - Something nasty happened so stop
'*
'**
Function InsertSQLTable(con, r, c, tbl$, msg$, b, n, d())

For x = 1 To (c - n)
msg$ = msg$ + "." : Print msg$
EditGoTo .Destination = tbl$
i = 1
While i < x

NextCell
i = i + 1

Wend

For y = 1 To r
SelectCurSentence
v = Val(RetrieveItem$(con , x + n, y))
If ((b) Or (v <> 0)) Then junk = Library.InsertWithDP(v, d(x))
LineDown 1

Next y
Next x

EditGoTo .Destination = tbl$
TableSelectTable
UpdateFields

InsertSQLTable = (1 = 1)

End Function

9.2 NORMAL.DOT (Library)

'**
'* LIBRARY ROUTINES
'* These are tried And tested routines. Note that in
'* coordance With Q48115 variable names have been kept
'* to minimum length, And no remarks exist in the Function
'* to provide maximum speed
'*
'**

'**
'* Takes a MS Access Date & time String And converts it
'* to the format "dd-mmm-yy"
'**
Function ConvertMSAccessDate$(d$)
If Len(d$) > 10 Then

mn = Val(Mid$(d$, 6, 2))
months$ = "JanFebMarAprMayJunJulAugSepOctNovDec"
mn$ = Mid$(months$,(mn - 1) * 3 + 1, 3)
ConvertMSAccessDate$ = Mid$(d$, 9, 2) + "-" + mn$ + "-" + Mid$(d$, 3, 2)

Else
ConvertMSAccessDate$ = d$

End If
End Function

Sub ClearNumDP(dp(), n)
For i = 1 To n

dp(i) = 0
Next i
End Sub

'**
'* Insert the data With the correct number of dp's
'* padded With training zeros If needed
'*
'* PARAMETERS: n - Value

http://www.nkitcher.co.uk/ Source Code 9-7

'* d - number of dp's
'**
Function InsertWithDP(n, d)

If (n = 0) And (d > 0) Then
l$ = " 0." + String $(d, "0")

Else
ndp = ToolsCalculate("10^" + LTrim$(Str$(d)))

n$ = Str$(Int(n * ndp + 0.5))
l$ = Left$(n$, Len(n$) - d)
If l$ = " " Then l$ = " 0"
If (d > 0) Then l$ = l$ + "." + Right$(n$, d)

End If
Insert l$

End Function

'**
'* Insert text at a bookmark, removing any old text
'**
Sub InsertAtBookmark(b$, t$)
EditGoTo .Destination = b$
n = Len(Selection$())
CharLeft 1
Insert t$
WW6_EditClear n
End Sub

'**
'* Insert text at a bookmark, removing any old text
'**
Sub InsertAtBookmarkWithDP(b$, t$, d)
EditGoTo .Destination = b$
n = Len(Selection$())
CharLeft 1
junk = InsertWithDP(Val(t$), d)
WW6_EditClear n
End Sub

'**
'* Return the top level drive+directory For reports
'* This MUST be the ONLY reference to reduce redundancy
'**
Function GetBaseReportingDirectory$
GetBaseReportingDirectory$ = "\\SERVER\Engineer\Reporting System"
End Function

'**
'* Return the template For the letter - may expand For
'* Each test type...
'**
Function GetLetterTemplate$
GetLetterTemplate$ = "\\SERVER\DATABASE\DOCUMENT\LETTER.DOT"
End Function

'**
'* Return the template For a given test ID
'**
Function GetReportTemplate$(t$, title$)
Dim d$(10)
x = - 1
GetReportTemplate$ = ""
INIFile$ = "\\SERVER\DATABASE\TEMPLATE.INI"
tp$ = t$ + ".DOT " : n = 1
k$ = "Type" + Mid$(Str$(n), 2)
a$ = GetPrivateProfileString$(t$, k$, INIFile$)
While a$ <> ""

d$(n) = a $: n = n + 1 : k$ = "Type" + Mid$(Str$(n), 2)
a$ = GetPrivateProfileString$(t$, k$, INIFile$)

Wend
If (n > 1) Then

n = n - 1
Begin Dialog UserDialog 428, 40 + (n * 17), title$

GroupBox 19, 4, 293, 23 + (n * 17), " Select Type o f " + t$ + " Report Required"
OptionGroup .TypeRequired
For i = 1 To n

OptionButton 29 , 4 + (i * 17), 270, 16, d$(i)

http://www.nkitcher.co.uk/ Source Code 9-8

Next i
OKButton 322, 7, 88, 21
CancelButton 322, 31, 88, 21

End Dialog
Dim dlg As UserDialog
x = Dialog(dlg)
If (dlg.TypeRequired > 0) Then

tp$ = t$ + Chr$(64 + dlg.TypeRequired) + ".DOT"
End If

End If
If (x = - 1) Then GetReportTemplate$ = "\\SERVER\DATABASE\DOCUMENT\" + tp$
End Function

'**
'* Is a one character String alphabetic?
'**
Function IsAlpha(a$)
a$ = UCase$(a$)
If ((a$ < "A") Or (a$ > "Z")) Then

IsAlpha = 0
Else

IsAlph a = - 1
End If
End Function

'**
'* Is a one character String numeric?
'**
Function IsNumeric(a$)
If ((a$ < "0") Or (a$ > "9")) Then

IsNumeric = 0
Else

IsNumeri c = - 1
End If
End Function

'**
'* Get current Users' name
'**
Function GetUserName$
Dim dlg As ToolsOptionsUserInfo
GetCurValues dlg
GetUserName$ = dlg.Name
End Function

'**
'* Get current Users' Initials
'**
Function GetUserInitials$
Dim dlg As ToolsOptionsUserInfo
GetCurValues dlg
GetUserInitials$ = dlg.Initials
End Function

'**
'* Get Standard Reporting Database Open String
'**
Function GetReportingDatabaseOpen$
i$ = GetUserInitials$
GetReportingDatabaseOpen$ = "DSN=Star_Bright;UID=" + i$ + ";PWD=" + i $ + " "
End Function

'**
'* Extract Customer ID from Job number
'**
Function ExtractCustomerID$(j$)
ExtractCustomerID$ = Left$(j$, 2)
End Function

'**
'* Extract Test ID from Job number
'**
Function ExtractTestID$(J$)
ExtractTestID$ = Mid$(j$, 3, 3)
End Function

'**
'* Extract Run Number from Job number

http://www.nkitcher.co.uk/ Source Code 9-9

'**
Function ExtractRunNumber$(j$)
ExtractRunNumber$ = Right$(j$, 3)
End Function

'**
'* Given a number convert it t o a 3 char String With
'* leading zeros
'**
Function MakeRunNum$(i)

a$ = Mid$(Str$(i), 2)
MakeRunNum$ = Left$("0000" , 3 - Len(a$)) + a$

End Function

'**
'* Given a jobnumber returns the jobnumber With the
'* run number fixed to 3 characters With leading
'* zeroes. Also fixes back slash
'**
Function PadoutRunNumber$(j$)
n$ = j$
If Len(j$) < 9 Then

n$ = Left$(j$, 5) + "/" + MakeRunNum$(Val(Mid$(j$, 7)))
End If
PadoutRunNumber$ = n$
End Function

'**
'* Given a starting directory (d$) And a run num$ (r$)
'* check that it exists
'* Return -1 For TRUE And 0 For FALSE
'**
Function CheckThatJobExists(d$, r$)
m = CountDirectories(d$)
i = 1
a$ = ""
While (i <= m) And (r$ <> a$)

a$ = GetDirectory$(d$, i)
i = i + 1

Wend
If (r$ <> a$) Then

CheckThatJobExists = 0 'FALSE
Else

CheckThatJobExist s = - 1 ' TRUE
End If
End Function

'**
'* From a given job number (j$) of the format AANNN/NNN
'* check whether a directory exists For it And If so
'* return the directory. If it does Not exist Then return
'* an Empty String. Job Number MUST be UPPER CASE
'* r$ Is the root directory For reports
'**
Function DirectoryFromJobNumber$(j$)
r$ = GetBaseReportingDirectory$ + "\"
DirectoryFromJobNumber$ = ""
cID$ = Left$(j$, 2)
tID$ = Mid$(j$, 3, 3)
rn$ = Mid$(j$, 7, 3)
d$ = MatchDirectory$(r$, cID$)
If d$ <> "" Then

r$ = r$ + d$
d$ = MatchDirectory$(r$, tID$)
If d$ <> "" Then

r$ = r$ + d$
If (CheckThatJobExists(r$, rn$) = - 1) Then

DirectoryFromJobNumber$ = r$ + rn$
End If

End If
End If
End Function

'**
'* From a given Ref number (r$) of the format AANNNN/C
'* check whether a directory exists For it And If so
'* return the directory. If it does Not exist Then return
'* an Empty String. TBD: Change f$ On /C code

http://www.nkitcher.co.uk/ Source Code 9-10

'* 5=Products, 6=OEM, 7=L&F
'**
Function DirectoryFromRef$(r$)
f$ = "\\SERVER\MARKETING\CLIENTS\"
Select Case Val(Right$(r$, 1))

Case 5
s$ = "Products"

Case 6
s$ = "OEM"

Case 7
s$ = "Lubes"

End Select
f$ = f$ + s$ + "\"
DirectoryFromRef$ = ""
cID$ = Left$(r$, 2)
d$ = MatchDirectory$(f$, cID$)
If d$ <> "" Then DirectoryFromRef$ = f$ + d$
End Function

'==
'= NOTE: Functions below here required changes to support
'= the directory structure round the other way where
'= the ID Is the first part And Not the extension
'==

'**
'* Given a starting directory (d$) And an extension (x$)
'* find a given directory And return it Else
'* return "".
'* W95 changes - Right$'s became Left$'s
'* CURRENT SET UP FOR WIN3.11 (i.e. 8DOT3 FILENAMES)
'**
Function MatchDirectory$(d$, x$)
m = CountDirectories(d$)
xLn = Len(x$)
i = 1
a$ = ""
While (i <= m) And (x$ <> Left$(a$, xLn))

a$ = GetDirectory$(d$, i)
i = i + 1

Wend
If (x$ <> Left$(a$, xLn)) Then

MatchDirectory$ = ""
Else

MatchDirectory$ = a$ + "\"
End If
End Function

'**
'* From a given directory return the job number
'* This Is the opposite of DirectoryFromJobNumber$()
'*
'**
Function JobNumberFromDirectory$(d$)

i = InStr(d$, ".")
cID$ = Mid$(d$, i - 2, 2) ' Was +1
i = InStr(i + 1, d$, "\") ' Was "."
tID$ = Mid$(d$, i + 1, 3)
i = InStr(i + 1, d$, "\") ' Added line
rn$ = Mid$(d$, i + 1, 3) ' Was + 5
JobNumberFromDirectory$ = cID$ + tID$ + "/" + rn$

End Function

9.3 NORMAL.DOT (GetDataFromDatabase)

Dim Shared TRUE
Dim Shared FALSE

Declare Function SQLOpen Lib "\\SERVER\DATABASE\WBODBC.WLL"(c As String , o As String , p As Integer)
As Integer

'**

http://www.nkitcher.co.uk/ Source Code 9-11

'*
'* "STAR BRIGHT" ENGINE TEST REPORTING PACKAGE
'* ===
'*
'*
'* Oct '98 - Flavour of the month *again*
'* Operational Summary - Emissions d.p.'s
'* Exhaust value - d.p's
'* Added support For any test ID (starting With the 236)
'* i.e. coding Is more generic
'* Migration code added to support moving to single
'* field job number rather than composite key
'* dp's now work For all values
'* A few "fudges" are in place For migration
'* these will need removing
'*
'*
'* Mar '96 - Added emissions table
'*
'* Feb '96 - Moved to Word'95. NOTE: SQLOpen stopped working
'* And it Is now necessary to call func. directly
'* from the MAIN macro Function
'*
'* Jan '96 - Removed e-mail And mmsound.
'*
'* Dec '95 - Major modifications For editing existing reports etc.
'*
'* Jan '95 - Updated table names to follow Access naming
'* convention from MSDN CD#10. (THIS HAS BEEN UNDONE!)
'*
'* Aug '94 - Alpha version of ODBC accessing a database
'*
'**

'**
'*
'* Main Procedure
'*
'**
Sub MAIN
Dim NumDP(20)
MacroTitle$ = "Star Bright Reporting System"
CR$ = Chr$(13)
TRUE = (1 = 1)
FALSE = Not TRUE

DEBUG = 0

MB_ICONINFORMATION = 64
MB_ICONSTOP = 16
MB_ICONEXCLAMATION = 48
MB_ICONQUESTION = 32
MB_YESNO = 4
MB_DEFAULT2 = 256
MB_YES = - 1
MB_NO = 0

IDC_NORMAL = 0
IDC_WAITCURSOR = 1

'* End of Constants

Print "Runnin g " + MacroTitle$ + "..."

'* In the live system uncomment the Next line
'On Error Goto CloseIt :

ScreenUpdating 0 '*** Don't update the screen While running
DisableInput 1 '*** Don't allow ESC to abort macro

bNewReport = TRUE
bRefreshing = FALSE '* Are going to Set Issue#
bAbort = FALSE '* If bAbort Then the report Is Not scrapped

JobNumber$ = Dialogs.EnterJobNumber$(TRUE, MacroTitle$)

If JobNumber$ = "" Then Goto MyEnd :

http://www.nkitcher.co.uk/ Source Code 9-12

'**
'* Check report to see If Is exists, And offer various options
'* to delete And start again, Or refresh it As existing/New issue
'**

Directory$ = Library.DirectoryFromJobNumber$(JobNumber$)
ReportFileName$ = Directory$ + "\Test Report.DOC"

If (Files$(ReportFileName$) <> "") Then
If (MsgBox("The report already exists For jo b " + JobNumber$ + CR$ + "Do you want to open

And refresh it?", MacroTitle$, MB_ICONQUESTION + MB_YESNO) = MB_YES) Then
'**********************************
'* Try to open file to refresh it
'**********************************
FileOpen ReportFileName$
bNewReport = FALSE
IssueNum = GetDocumentProperty("IssueNum")

a$ = "For refreshed reports you have the Option of maintaining the issue of" +
Str$(IssueNum)

a$ = a$ + " Or incrementing it." + CR$ + "Should the issue For this report be
incremented to" + Str$(IssueNum + 1) + "?"

If (MB_YES = MsgBox(a$, MacroTitle$, MB_ICONQUESTION + MB_YESNO)) Then
bRefreshing = TRUE
IssueNum = GetDocumentProperty("IssueNum") + 1

End If

Else
'**********************************
'* Do we want to delete & Restart
'**********************************
If (MsgBox("Would you like to delete the report Fo r " + JobNumber $ + " And start from

fresh?", MacroTitle$, MB_ICONQUESTION + MB_YESNO) = MB_YES) Then
Kill ReportFileName$

Else
Goto MyEnd

End If
End If

End If

WaitCursor IDC_WAITCURSOR

'**
'* Build strings that will be used several times through out
'* the course of the code
'* The table specific to this test Is built up from the Test_ID
'**

'* Only reference these strings.
Customer_ID$ = Library.ExtractCustomerID$(JobNumber$)
Run_Number$ = Library.ExtractRunNumber$(JobNumber$)
Test_ID$ = Library.ExtractTestID$(JobNumber$)

'* Choose the required report template (If New report)
If (bNewReport = TRUE) Then

ReportingTemplate$ = Library.GetReportTemplate$(Test_ID$, MacroTitle$)
If ReportingTemplate$ = "" Then Goto MyEnd :

End If

' SpecificTable$ = "tbl" + Test_ID$ + "Det"
'### CHANGED ABOVE LINE FOR DEMO
SpecificTable$ = Test_ID$ + "_Specific"
RatingTable$ = Test_ID$ + "_ValveRating"
ValveWeightTable$ = Test_ID$ + "_ValveWeights"
EmissionsTable$ = Test_ID$ + "_Emissions"
OpsSummaryTable$ = Test_ID$ + "_Running"
CombustionDepTable$ = Test_ID$ + "_CombustionDeposits"

'**
Dim Table$(10)

'*** These are the tables that will be referenced
'### CHANGED LINES BELOW BACK FROM tblNAME SINGULAR
Table$(1) = "Jobs"
Table$(2) = "Tests"
Table$(3) = "Customers"
Table$(4) = ""

http://www.nkitcher.co.uk/ Source Code 9-13

'**

'
' Delete any gratuitous connections from previous runs, that may Not have been open
'
SQL.CloseAllDBMS

'**
'* Open the connection to the database.
'* Note that users are logged On under their initials As UID And
'* As their password
'**

DBOpen$ = Library.GetReportingDatabaseOpen$

'*** NB: Change to work With Word'95
'connect_num = SQL.ConnectToDBMS(DBOpen$)
connect_num = SQLOpen(DBOpen$, r$, 4)

If connect_num <= 0 Then
SQL.ParseErrors("")
a$ = "There Is a problem connecting to the database. The most likely cause Is that the

database has been opened elsewhere."

MsgBox a$, MacroTitle$, MB_ICONSTOP

Goto Myend
End If

'*** NB: Change to work With Word'95
'connect_num_headings = SQL.ConnectToDBMS(DBOpen$)
connect_num_headings = SQLOpen(DBOpen$, r$, 4)

If connect_num_headings <= 0 Then Goto Myend

'**
'* Create a New report (If Not an existing report)
'**

If (bNewReport = TRUE) Then
Print "Opening New report..."
FileNew .Template = ReportingTemplate$

End If

ViewNormal

'**
'* Special Case to insert the job number without using
'* three components
'**

If ExistingBookmark("JobNumber") Then
Library.InsertAtBookmark("JobNumber", JobNumber$)

End If

'**
'* Build the main SQL Select statement
'**

Print "Building SQL Select statement..."

Select$ = "SELECT * FROM "

'*** List the tables to be referenced...
i = 1
While (Table$(i) <> "")

Select$ = Select$ + Table$(i)
i = i + 1
If (Table$(i) <> "") Then Select$ = Select$ + ", "

Wend

Select$ = Select $ + " WHERE (Tests.Test_ID = Jobs.Test_ID) And "

'**
'* Build up the WHERE of the SELECT from dialog input
'**

Select$ = Select$ + "(Jobs.Customer_ID = '" + Customer_ID$ + "') And "

http://www.nkitcher.co.uk/ Source Code 9-14

Select$ = Select$ + "(Customers.Customer_ID = '" + Customer_ID$ + "') And "
Select$ = Select$ + "(Jobs.Test_I D = " + Test_ID $ + ") And"
Select$ = Select$ + "(Jobs.Run_Numbe r = " + Run_Number$ + ")"

bIgnore = FALSE

comment$ = "Common Data"

If (SQL.GetAndInsertData(connect_num, connect_num_headings, Select$, Table$(), comment$, bIgnore,
JobNumber$, MacroTitle$) = TRUE) Then Goto CloseIt :

'**
'* Build the SQL Select statement For test specific data
'**

Select$ = "SELECT * FRO M " + SpecificTable$
Select$ = MakeSelect$(Select$, Customer_ID$, Test_ID$, Run_Number$)

Table$(1) = SpecificTable$
Table$(2) = ""

comment$ = "Test Specific Data"

If (SQL.GetAndInsertData(connect_num, connect_num_headings, Select$, Table$(), comment$, bIgnore,
JobNumber$, MacroTitle$) = TRUE) Then Goto CloseIt :

'**
'* VALVE RATING DATA
'* Note that valve rating data Is ONLY inserted If a table exists
'* For that valve
'**

Phase$ = "C" '* Set Phase initially to Clean-Up
Library.ClearNumDP NumDP(), 20

NextPhase:

If ExistingBookmark(Phase$ + "RatingTable1") Then

Select$ = "SELECT * FRO M " + RatingTable$
Select$ = MakeSelect$(Select$, Customer_ID$, Test_ID$, Run_Number$)
Select$ = Select $ + " AND (Phase = '" + Phase$ + "') "

valve = 1

TableID$ = Phase$ + "RatingTable" + Mid$(Str$(valve), 2)

While (ExistingBookmark(TableID$))

msg$ = "Inserting rating data For valve" + Str$(valve)

s$ = Select$ + "AND (ValveNumbe r = " + Str$(valve) + ") ORDER BY Segment "

ret = SQL.WaitForTransaction(connect_num, s$)
If ret <= 0 Then SQL.ParseErrors("Rating")

ret = SQL.RetrieveNumberOfRowsCol(connect_num, rows, cols)

If (Test_ID$ = "214") Then
startCol = 5

Else
startCol = 4

End If

junk = SQL.InsertSQLTable(connect_num, rows, cols, TableID$, msg$, FALSE, startCol,
NumDp())'Changed from 2 t o 0 - Oct98

valve = valve + 1
TableID$ = Phase$ + "RatingTable" + Mid$(Str$(valve), 2)

Wend

Select$ = "SELECT * FRO M " + ValveWeightTable$
Select$ = MakeSelect$(Select$, Customer_ID$, Test_ID$, Run_Number$)
Select$ = Select $ + " AND (Phase = '" + Phase$ + "') "

ret = SQL.WaitForTransaction(connect_num, Select$)

http://www.nkitcher.co.uk/ Source Code 9-15

If ret <= 0 Then SQL.ParseErrors("Valve Weights")

For v = 1 To 4
b$ = phase$ + "WeightBefore" + Mid$(Str$(v), 2)
If ExistingBookmark(b$) Then

item$ = SQL.RetrieveItem$(connect_num, 5, v)
Library.InsertAtBookmark(b$, item$)

End If
b$ = phase$ + "WeightAfter" + Mid$(Str$(v), 2)
If ExistingBookmark(b$) Then

item$ = SQL.RetrieveItem$(connect_num, 6, v)
Library.InsertAtBookmark(b$, item$)

End If
Next v

End If

If Phase$ = "C" Then
Phase$ = "D" '* Set Phase to Dirty-Up And re-run valve tables
Goto NextPhase :

End If

'**
'* EMISSIONS DATA
'* Note that emissions data Is ONLY inserted If a table exists
'**

TableID$ = "emis"'* name of bookmark in document
Library.ClearNumDP NumDP(), 20
NumDP(2) = 2

If ExistingBookmark(TableID$) Then

Select$ = "SELECT * FRO M " + EmissionsTable$
Select$ = MakeSelect$(Select$, Customer_ID$, Test_ID$, Run_Number$)

msg$ = "Inserting Emissions Data"

ret = SQL.WaitForTransaction(connect_num, Select$)
If ret <= 0 Then SQL.ParseErrors("Emissions")

ret = SQL.RetrieveNumberOfRowsCol(connect_num, rows, cols)

If (Test_ID$ = "214") Then
startCol = 3

Else
startCol = 2

End If

junk = SQL.InsertSQLTable(connect_num, rows, cols, TableID$, msg$, TRUE, startCol, NumDP())

End If

'**
'* OPERATIONS SUMMARY DATA
'**

Library.ClearNumDP NumDP(), 20
NumDP(2) = 1' Torque
NumDP(3) = 2 ' Fuel kg/hr

If ExistingBookmark("Operations_Summary1") Then

Select$ = "SELECT * FRO M " + OpsSummaryTable$
Select$ = MakeSelect$(Select$, Customer_ID$, Test_ID$, Run_Number$)

Stage = 1

TableID$ = "Operations_Summary" + Mid$(Str$(Stage), 2)

While (ExistingBookmark(TableID$))

msg$ = "Inserting running data For stage" + Str$(Stage)

s$ = Select$ + "AND (Stag e = " + Str$(Stage) + ") "

ret = SQL.WaitForTransaction(connect_num, s$)
If ret <= 0 Then SQL.ParseErrors("Operations Summary")

http://www.nkitcher.co.uk/ Source Code 9-16

ret = SQL.RetrieveNumberOfRowsCol(connect_num, rows, cols)

'DEBUG MsgBox "Rows:" + Str$(rows) + cr$ + "Cols:" + Str$(col)

If (Test_ID$ = "214") Then
startCol = 4

Else
startCol = 3

End If

junk = SQL.InsertSQLTable(connect_num, rows, cols, TableID$, msg$, TRUE, startCol,
NumDP())

Stage = Stage + 1
TableID$ = "Operations_Summary" + Mid$(Str$(Stage), 2)

Wend

End If

'**
'* Total Fuel Flow
'**
b$ = "TotalFuelFlow"

If ExistingBookmark(b$) Then

Select$ = "SELECT * FROM q" + Test_ID$ + "Totalfuelflow"
Select$ = MakeSelect$(Select$, Customer_ID$, Test_ID$, Run_Number$)

comment$ = "Calculating total fuel flow"

ret = SQL.WaitForTransaction(connect_num, Select$)
If ret <= 0 Then SQL.ParseErrors("Total fuel flow")

item$ = (SQL.RetrieveItem$(connect_num, 3, 1))
Library.InsertAtBookmarkWithDP("TotalFuelFlow", item$, 0)

End If

'**
'* Set the issue control to issue n If we are refreshing Or 1 If
'* If this Is a New issue
'**

If (bRefreshing = TRUE) Then
Issues.SetIssue("Refreshed by Reporting System", 0)

Else
Issues.SetIssue("Created by Reporting System", 1)

End If

EditSelectAll
UpdateFields
UpdateFields
StartOfDocument

'**
'* Save the report - but recommend read-only For re-opening
'**

'* Note: FileName$ Is a reserved word so use ReportFileName$ instead

ScreenUpdating 1 ' *** Allow the screen to update

'*** Set the document properties ***
SetDocumentProperty("JobNum", 0, JobNumber$, 2)
SetDocumentProperty("DocType", 0, "Report", 2)
'***********************************

If ((Files$(ReportFileName$) <> "") And (bRefreshing = False)) Then
a$ = "The report For job numbe r " + JobNumber $ + " already exists." + CR$ + "Can Not

overwrite the old copy As it may be in use elsewhere."

MsgBox a$, MacroTitle$, MB_ICONSTOP
Else

'* THIS IS THE LINE THAT WRITES THE REPORT TO DISK!!!
FileSaveAs .Name = ReportFileName$, .RecommendReadOnly = 1

http://www.nkitcher.co.uk/ Source Code 9-17

'**
'***
'*** As the report has now been safely written to disk must
'*** update the database to say that this report has been
'*** produced
'***
'**

ret = SQL.UpdateJobDate(connect_num, JobNumber$, "dtmReport_Written")

If ret <= 0 Then SQL.ParseErrors("")

Print "Fil e " + ReportFileName $ + " saved to disk."
a$ = "The report For job numbe r " + JobNumber $ + " has been created." + CR$ + "It can be

found in the directory : " + CR$ + Directory$ + CR$ + "The database has been updated to state that
the report has been written"

MsgBox a$, MacroTitle$, MB_ICONINFORMATION

End If

'**
'*** Close the database connection
'**
CloseIt:
If Err = 75 Then

MsgBox "The report can Not be deleted. It may be open elsewhere.", MacroTitle$, MB_ICONSTOP
ElseIf (Err <> 0) Then

MsgBox "The macro encountered an Error" + CR$ + "The Error number I s " + Str$(Err), "Error
Message", MB_ICONSTOP
End If

ret = SQL.CloseDBMS(connect_num)

'** Should move this nearer to where it Is used
ret = SQL.CloseDBMS(connect_num_headings)

'**
'* Normal Exit point, And Exit Point For Error handling
'**
MyEnd:

If (bAbort = TRUE) Then FileClose 2 '* Close - Don't Save

WaitCursor IDC_NORMAL

Print "Done."

End Sub

'**
'*
'* NOTE: This Function Is simply whilst the migration from a
'* composite primary key to a single field primary key takes place
'* This Is previously the customer And run numbers were in
'* separate fields And Not simply a job number field
'*
'* When the 214 tables have been amended this Function should
'* be removed
'**
Function MakeSelect$(s$, c$, t$, r$)

If t$ = "214" Then
s$ = s$ + " WHERE (Customer_ID = '" + c$ + "')"
s$ = s$ + " AND (Run_Numbe r = " + r$ + ") "

Else
s$ = s$ + " WHERE (sJobID = '" + c$ + t$ + r$ + "') "

End If

MakeSelect$ = s$

End Function

