
Written by: Nigel Kitcher 28th January 2002

User Manual and Source Code
for
Email Contact Import Application
developed
For Driving Development of Maidenhead



http://www.nkitcher.co.uk/ Project Specification 1-1

1. Project Specification

1.1 Company and Project Overview
Driving Development is a driver training company with the objectives of teaching
limit handling whether at speed or under wet conditions.

The success of the company is largely due to the growth of its Internet presence as its
client base is largely made up of IT professionals. Enquiries and contact information
comes into the company via the email system either as the output from the enquiry
form on the web site, or from periodical news and discussion group digests.

There is a requirement to take the data from these emailed sources and to add them to
the contacts held within the email system.

1.2 Detail
The current emails that arrive are in one of two formats.

The first of these (the enquiry form format) is simply one email per contact with the
contacts name and email address presented within opening and closing square
brackets.

For example:
Name [Stephen Whitehorn] email address [s.whitehorn@talk21.com]

These emails can distinguished by the subject line of:
“Enquiry fromwww.DrivingTechniques.co.uk”

The second format is that used by the periodical news and discussion group digests.
These are presented by the contact name, which is enclosed in double quotes, and the
email address, which is enclosed in less than and greater than signs.

For example:
"nes" email address <nes@globalnet.co.uk>

These emails have no constant distinguishing email subject line, as they will typically
include a date or a digest number. As there are a number of sources the program
should be flexible to allow a specified subject line, which will be used as a basis for
pattern matching.

Outlook is the current company email system and a number of subfolders have been
created to allow efficient filing of emails and contacts. As such the program should
allow the user to specify the location of the emails to be scanned and the location in
which to place the contacts once created.



http://www.nkitcher.co.uk/ Project Specification 1-2

1.3 Summary of Requirements
• Should be able to graphically select the source folder for emails to scan, and

also the destination folder in which to place contacts
• Should be able to filter emails for checking by pattern matching text in the

subject line
• Should be able to select from a range of common text delimiters either square

brackets or double quotes and angle brackets.
• Contacts should not be duplicated if already existing in the system
• For auditing purposes it should be possible to specify a user defined message

to be placed in the contacts notes during its creation
• User input should be saved and recovered for later sessions
• A user set up program should be provided for ease of installation
• A report should be generated of how many emails were checked, how many

contacts were created, as well as any errors such as duplicate contacts



http://www.nkitcher.co.uk/ User Manual 2-1

2. User Manual

2.1 Installation

To start the installation process double click the SETUP.EXE which maybe found on
the setup disks.

The user is presented with Welcome dialog shown in Figure 1 below. Simply click
[OK] to continue.

Figure 1 - Contact Importer Setup Dialog

Next the user is presented with the dialog show below to choose the installation path.
This is typically “C:\Program Files\DryBum Email Tools\ ”. Unless you have a
requirement to change the local click the large [SETUP] button.

Figure 2 - Installation Folder Selection

The next dialog is the Program Group Selection. The default group is “DryBum Email
Tools”. If there is no requirement to change this title, or add the application to an
existing group simply choose [CONTINUE].



http://www.nkitcher.co.uk/ User Manual 2-2

Figure 3 - Program Group Selection

Once the files have been copied to the PC and the installation the user will see the
screen shown in Figure 4 below. Choose [OK] and continue with section 2.2 for
instructions on how to use the application to import contact details into Outlook.

Figure 4 - Installation Complete

2.2 Starting the Contact Importer Application

To start the Importer program choose the [Contact Importer] icon from the [Drybum
Email Tools] program group on the Programs menu.

Figure 5 - Contact Importer Menu Option



http://www.nkitcher.co.uk/ User Manual 2-3

You will be presented with the About dialog box shown in Figure 6. This shows the
version of the program together with hyperlinks to web sites of Driving Development
and of Nkitcher. If you wish to display this dialog box once the program is running it
may be found under “About” on the system menu of the main dialog, or alternatively
click the “Outlook” logo on the main dialog.

Choose [OK] to continue to skip the About box.

Figure 6 - About Dialog

2.3 Main Dialog

The Contact Importer consists of the dialog box shown in Figure 7.

There are just two options. The first button ([Import]) starts the import process using
the saved settings from a previous session.

The second button ([Options]) allows the user to specify the settings such as the
location of the incoming emails and where created contacts should be placed.

Figure 7 - Main Dialog

2.4 Setting Importation Settings

Choosing [Options] from the main dialog will display the Options Dialog box shown
in Figure 8. This dialog is broken up into four sections.



http://www.nkitcher.co.uk/ User Manual 2-4

Figure 8 - Options Dialog

2.5 Folder Selection
The Folder Selection section allows the user to choose the Outlook folders to be used
for scanning for emails and for creating contact records that it creates from the mails.

Selecting the ellipse button ([…]) for either the Inbox or Contact Folder will display
the appropriate selection dialog. The Inbox folder selection dialog is shown below in
Figure 9. Simply choose the required folder from the Outlook folder tree to change
the selection shown at the bottom of the dialog and choose [OK]. Choosing [Cancel]
will leave the folder unchanged.

Figure 9 - Outlook Folder Selection Dialog



http://www.nkitcher.co.uk/ User Manual 2-5

2.5.1 Validation Section
The Validation section, shown in Figure 10 below, allows the scanned emails to be
filtered based on the subject line of the email. This can be used to speed up processing
where emails are not easily separated by filters within Outlook.

To enable this feature tick the “Check Subject Line” check box and enter the text to
be matched in the “Subject” edit box. Note that the text entered simply has to appear
anywhere within the subject line of the email. A complete match is not required.

Figure 10 - Validation section

2.5.2 Delimiters Section
The delimiters section allows the user to choose between square brackets or quotes
and angle brackets. Simply choose the appropriate radio button as shown in Figure 11
below.

Figure 11 - Delimiters section

2.5.3 Update Contact Body Section
The “Update Contact Body” section permits the entry of free text that should be added
to the body of any created contact. This is useful, for example, for adding the date or
other reference to aid further processing within Outlook.

If the edit box is left blank the user is prompted every time an imported is performed
to allow the body to be updated without having to select [Options] every time from
the main dialog.

Figure 12 - Update Contact Body section



http://www.nkitcher.co.uk/ User Manual 2-6

2.6 Performing an Import
Once the application has been configured the [Import] button on the main dialog can
be used to start the process.

If the “Update Contact Body” edit box was left blank in the Options dialog the user is
first offered, via the message box shown in Figure 13, the choice of entering text for
this import run.

Figure 13 - Contact Update Text Reminder Message

Choosing [Yes] will present the user with the dialog shown in Figure 14, whilst [No]
will continue the run but not place any text within any new contacts body field.
Selecting [Cancel] will abort the import.

Figure 14 - Contact Update Text Dialog

The user is next presented with confirmation of the number of emails that have been
found in the selected input folder. The user must select [Yes] to continue

Figure 15 - Import Message box



http://www.nkitcher.co.uk/ User Manual 2-7

Once the email scan has been completed a report will be displayed similar to that
shown in Figure 16. This displays the total number of emails that were processed, the
number of new contacts created, the number of duplicate contacts that were skipped,
the number of emails that failed the subject line test (if selected), and the number of
emails that did not contain contact information.

Simply choose [OK] to return to the main dialog.

Figure 16 - Import Report Dialog



http://www.nkitcher.co.uk/ Source Code (abridged) 3-1

3. Source Code (abridged)



http://www.nkitcher.co.uk/ Source Code (abridged) 3-2

3.1 frmAbout

Private Declare Function ShellExecute _
Lib "shell32.dll" _
Alias "ShellExecuteA" ( _
ByVal hwnd As Long , _
ByVal lpOperation As String , _
ByVal lpFile As String , _
ByVal lpParameters As String , _
ByVal lpDirectory As String , _
ByVal nShowCmd As Long ) _
As Long

Private Sub OK_Click()
'
' Function: OK_Click()
'
' Parameters: none
'
' Purpose: Hides the About box
'
' Updates: 24-Jan-02

frmAbout.Hide

End Sub

Private Sub webDriving_Click()
'
' Function: webDriving_Click()
'
' Parameters: none
'
' Purpose: Starts the web browser to point at the clients site when
' the link Is clicked
'
' Updates: 24-Jan-02

Dim r As Long
r = ShellExecute(0, "open", "http://www.drivingdevelopment.co.uk", 0, 0, 1)

End Sub

Private Sub webNKitcher_Click()
'
' Function: webNKitcher_Click()
'
' Parameters: none
'
' Purpose: Starts the web browser to point at my web site when
' the link Is clicked
'
' Updates: 24-Jan-02

Dim r As Long
r = ShellExecute(0, "open", "http://www.nkitcher.co.uk", 0, 0, 1)

End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-3

3.2 frmContactUpdate

Private Sub Cancel_Click()
'
' Function: Cancel_Click()
'
' Parameters: none
'
' Purpose: Closes the Contact update box
'
' Updates: 24-Jan-02

frmContactUpdate.Hide

End Sub

Private Sub OK_Click()
'
' Function: OK_Click()
'
' Parameters: none
'
' Purpose: Get the user entered text And closes
' contact update box
'
' Updates: 24-Jan-02

' Retrieve the Text that will form the body text of the New contacts
szContactUpdate = txtContactUpdate.Text

frmContactUpdate.Hide
End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-4

3.3 frmFolderSelection

Option Explicit
Dim szUndoPath As String ' Remember the initial path For Cancelling this dialog

Private Sub Form_Load()
'
' Function: Form_Load()
'
' Parameters: none
'
' Purpose:
' Gets the root of the MAPI namespace And generates
' the tree view control of that namespace when the "FolderSelection"
' form Is loaded.
'
' Updates: 24-Jan-02

Dim ol As Outlook.Application
Dim olns As Outlook.NameSpace
Dim objRootFolder As Outlook.MAPIFolder

' Get the Application Object.
Set ol = New Outlook.Application

' Get the Namespace Object.
Set olns = ol.GetNamespace("MAPI")

' Get the root of the default folders
Set objRootFolder = olns.GetDefaultFolder(olFolderInbox).Parent

' Populate the TreeView control
AddLeaf objRootFolder, OutlookFolderView, "", 1

szUndoPath = lblPath.Caption

End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-5

Private Sub AddLeaf(ObjRoot As Outlook.MAPIFolder, vntTree As Variant , szParentCod
e As String , n As Integer )
'
' Function: AddLeaf
'
' Parameters: ObjRoot - the root point For these nodes to be added at
' vntTree - the main tree structure
' szParentCode - the unique index of the parent of this node
' n - the peer node counter For this level
'
' Purpose:
' Recursively iterates through the tree adding nodes And
' child nodes to represent the MAPI name space.
'
' Updates: 24-Jan-02

Dim szNodeIndex As String
Dim i As Integer
Dim nodX As MSComctlLib.Node
Dim szFolderType As String

' Decide which type of folder to Set the tree nodes icon

Select Case ObjRoot.DefaultItemType
Case olTaskItem:

szFolderType = "task"
Case olAppointmentItem:

szFolderType = "calendar"
Case olMailItem:

szFolderType = "mail"
Case olContactItem:

szFolderType = "contact"
Case olJournalItem:

szFolderType = "journal"
Case olNoteItem:

szFolderType = "notes"
Case Else

szFolderType = "folder"
End Select

' Generate an index For this root based On its parents code plus its
' peer level code
szNodeIndex = szParentCode + Chr$(64 + n)

' Add a child node Or create the tree root depending On its parent
If (szParentCode = "") Then

Set nodX = vntTree.Nodes.Add(, , szNodeIndex, ObjRoot.Name, "outlook")
Else

Set nodX = vntTree.Nodes.Add(szParentCode, tvwChild, szNodeIndex, _
ObjRoot.Name, szFolderType)

End If

nodX.EnsureVisible

' Iterate through all child folders of this folder And add them in turn
For i = 1 To ObjRoot.Folders.Count

AddLeaf ObjRoot.Folders(i), vntTree, szNodeIndex, i
Next i

End Sub

Private Sub Cancel_Click()
'
' Function: Cancel_Click()
'
' Parameters: none
'
' Purpose:
' Closes the FolderSelection form And undoes the chosen folder
'
' Updates: 24-Jan-02

lblPath.Caption = szUndoPath
frmFolderSelection.Hide

End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-6

Private Sub OK_Click()
'
' Function: OK_Click()
'
' Parameters: none
'
' Purpose:
' Closes the FolderSelection form
'
' Updates: 24-Jan-02

frmFolderSelection.Hide

End Sub

Private Sub OutlookFolderView_NodeClick( ByVal Node As MSComctlLib.Node)
'
' Function: OutlookFolderView_NodeClick()
'
' Parameters: Node - unused
'
' Purpose:
' Update the Path shown at bottom of the dialog box when selection i
s changed
'
' Updates: 24-Jan-02

lblPath.Caption = OutlookFolderView.SelectedItem.FullPath

End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-7

3.4 frmImportReport

Private Sub OK_Click()
'
' Function: OK_Click()
'
' Parameters: none
'
' Purpose: Closes the Report box
'
' Updates: 24-Jan-02

frmImportReport.Hide

End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-8

3.5 frmMain

Private Sub btnOptions_Click()
' Function: btnOptions_Click()
'
' Parameters: none
'
' Purpose: Displays the Options Dialog box
'
' Updates: 24-Jan-02

frmOptions.Show vbModal
Unload frmOptions

End Sub

Private Sub Form_Load()
'
' Function: Form_Load()
'
' Parameters: none
'
' Purpose:
' Adds an "About" menu Option to the system menu And
' retrieves the application user settings from the registry when
' the application starts
'
' Updates: 23-Jan-02

gWH = Me.hwnd
Dim hw As Long
Dim hMenu As Long
Dim X As Long
'First we need to add our own menu item
'to the System Menu
hw = Me.hwnd
hMenu = GetSystemMenu(hw, False )
X = AppendMenu(hMenu, MF_SEPARATOR, 0, "")
X = AppendMenu(hMenu, MF_ STRING, SC_NEWMENU, "&About...")
hook

bCheckSubject = (QueryValue("Software\ContactImporter", "CheckSubjectLine") =
"Yes")

szInboxFolder = QueryValue("Software\ContactImporter", "InboxFolder")
szContactFolder = QueryValue("Software\ContactImporter", "ContactFolder")
szSubjectLine = QueryValue("Software\ContactImporter", "SubjectLine")
szDelimiter = QueryValue("Software\ContactImporter", "Delimiter")
szContactUpdate = QueryValue("Software\ContactImporter", "ContactUpdate")
imgDrivingDev_Click

End Sub

Private Sub Form_Unload(Cancel As Integer )
'
' Function: Form_UnLoad()
'
' Parameters: none
'
' Purpose:
' Unhooks the "About" menu item from the system menu
' And stores the application user settings in the registry
'
'
' Updates: 23-Jan-02

Unhook

CreateNewKey "Software\ContactImporter\", HKEY_CURRENT_USER
SetKeyValue "Software\ContactImporter", "InboxFolder", szInboxFolder, REG_SZ
SetKeyValue "Software\ContactImporter", "ContactFolder", szContactFolder, REG_

SZ
SetKeyValue "Software\ContactImporter", "SubjectLine", szSubjectLine, REG_SZ
SetKeyValue "Software\ContactImporter", "Delimiter", szDelimiter, REG_SZ
SetKeyValue "Software\ContactImporter", "ContactUpdate", szContactUpdate, REG_

SZ



http://www.nkitcher.co.uk/ Source Code (abridged) 3-9

If (bCheckSubject = True ) Then
SetKeyValue "Software\ContactImporter", "CheckSubjectLine", "Yes", REG_SZ

Else
SetKeyValue "Software\ContactImporter", "CheckSubjectLine", "No", REG_SZ

End If

End Sub

Private Sub imgDrivingDev_Click()
'
' Function: imgDrivingDev_Click()
'
' Parameters: none
'
' Purpose:
' Displays the About box when the Image On the main form
' Is clicked
'
' Updates: 24-Jan-02

frmAbout.Show vbModal
Unload frmOptions

End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-10

3.6 frmOptions

Option Explicit

Private Sub btnBrowseInbox_Click()
'
' Function: btnBrowseInbox_Click()
'
' Parameters: none
'
' Purpose:
' Sets the dialog box title And currently selected path For the
' Inbox folder And brings up the folder selection dialog box
' to allow user to change the selection
'
' Updates: 23-Jan-02

frmFolderSelection.Caption = "Select Inbox (Source) Folder"
frmFolderSelection.lblPath.Caption = txtInboxFolder
frmFolderSelection.Show vbModal
txtInboxFolder = frmFolderSelection.lblPath.Caption
Unload frmFolderSelection

End Sub

Private Sub btnBrowseContact_Click()
'
' Function: btnBrowseContact_Click()
'
' Parameters: none
'
' Purpose:
' Sets the dialog box title And currently selected path For the
' contact folder And brings up the folder selection dialog box
' to allow user to change the selection
'
' Updates: 23-Jan-02

frmFolderSelection.Caption = "Select Contact (Destination) Folder"
frmFolderSelection.lblPath.Caption = txtContactFolder
frmFolderSelection.Show vbModal
txtContactFolder = frmFolderSelection.lblPath.Caption
Unload frmFolderSelection

End Sub

Private Sub SetCheck()
'
' Function: SetCheck()
'
' Parameters: none
'
' Purpose:
' When users en/disables the email subject line checking change the
' edit box so that user can/Not edit the subject line. Give colour
' feedback On the edit box.
'
' Updates: 23-Jan-02

If (CheckSubject.Value = vbUnchecked) Then
' Disable subject line checking
lblSubject.Enabled = False
editSubject.Enabled = False
editSubject.Locked = True
editSubject.BackColor = &H8000000F

Else
' Enable subject line checking
lblSubject.Enabled = True
editSubject.Enabled = True
editSubject.Locked = False
editSubject.BackColor = &H80000009

End If

End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-11

Private Sub CheckSubject_Click()
'
' Function: CheckSubject_Click()
'
' Parameters: none
'
' Purpose:
' Update status of controls when the subject text box Is clicked
'
' Updates: 23-Jan-02

SetCheck
End Sub

Private Sub Form_Load()
'
' Function: Form_Load()
'
' Parameters: none
'
' Purpose:
' Initilises the Options form
'
' Updates: 23-Jan-02

If (bCheckSubject = True ) Then
CheckSubject.Value = vbChecked

Else
CheckSubject.Value = vbUnchecked

End If

If (szDelimiter = "[") Then
optSquareBrackets.Value = True

Else
optQuotes = True

End If

txtContactUpdate.Text = szContactUpdate
txtInboxFolder.Caption = szInboxFolder
txtContactFolder.Caption = szContactFolder
editSubject.Text = szSubjectLine

SetCheck

End Sub

Private Sub OK_Click()
'
' Function: OK_Click()
'
' Parameters: none
'
' Purpose:
' Accepts all the user settings from the Option dialog And close it
'
' Updates: 23-Jan-02

If (CheckSubject.Value = vbChecked) Then
bCheckSubject = True

Else
bCheckSubject = False

End If

If (optSquareBrackets.Value = True ) Then
szDelimiter = "["

Else
szDelimiter = Chr$(34)

End If

szSubjectLine = editSubject.Text
szContactUpdate = txtContactUpdate.Text
szInboxFolder = txtInboxFolder.Caption
szContactFolder = txtContactFolder.Caption
frmOptions.Hide

End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-12

Private Sub Cancel_Click()
'
' Function: Cancel_Click()
'
' Parameters: none
'
' Purpose:
' Hides the Options form when Cancel button Is clicked
'
' Updates: 23-Jan-02

frmOptions.Hide

End Sub



http://www.nkitcher.co.uk/ Source Code (abridged) 3-13

3.7 RegistryAccess

Option Explicit
'
' Function: Registry Access Functions
'
' Parameters: n/a
'
' Purpose:
' Following code taken from MSDN to allow app. settings to be stored

And
' retrieved from the registry under the local user hive And Not unde
r VB
' programs And settings.
'
' (search For "HOWTO: Use the Registry API to Save And Retrieve Sett
ing")
'

Public Const REG_SZ As Long = 1
Public Const REG_DWORDAs Long = 4

Public Const HKEY_CLASSES_ROOT = &H80000000
Public Const HKEY_CURRENT_USER = &H80000001
Public Const HKEY_LOCAL_MACHINE = &H80000002
Public Const HKEY_USERS = &H80000003

Public Const ERROR _NONE = 0
Public Const ERROR _BADDB = 1
Public Const ERROR _BADKEY = 2
Public Const ERROR _CANTOPEN = 3
Public Const ERROR _CANTREAD = 4
Public Const ERROR _CANTWRITE = 5
Public Const ERROR _OUTOFMEMORY = 6
Public Const ERROR _ARENA_TRASHED = 7
Public Const ERROR _ACCESS_DENIED = 8
Public Const ERROR _INVALID_PARAMETERS = 87
Public Const ERROR _NO_MORE_ITEMS = 259

Public Const KEY_QUERY_VALUE = &H1
Public Const KEY_SET_VALUE = &H2
Public Const KEY_ALL_ACCESS = &H3F

Public Const REG_OPTION_NON_VOLATILE = 0

Declare Function RegCloseKey Lib "advapi32.dll" _
( ByVal hKey As Long ) As Long
Declare Function RegCreateKeyEx Lib "advapi32.dll" Alias _
"RegCreateKeyExA" ( ByVal hKey As Long , ByVal lpSubKey As String , _
ByVal Reserved As Long , ByVal lpClass As String , ByVal dwOptions _
As Long , ByVal samDesired As Long , ByVal lpSecurityAttributes _
As Long , phkResult As Long , lpdwDisposition As Long ) As Long
Declare Function RegOpenKeyEx Lib "advapi32.dll" Alias _
"RegOpenKeyExA" ( ByVal hKey As Long , ByVal lpSubKey As String , _
ByVal ulOptions As Long , ByVal samDesired As Long , phkResult As _
Long ) As Long
Declare Function RegQueryValueExString Lib "advapi32.dll" Alias _
"RegQueryValueExA" ( ByVal hKey As Long , ByVal lpValueName As _
String , ByVal lpReserved As Long , lpType As Long , ByVal lpData _
As String , lpcbData As Long ) As Long
Declare Function RegQueryValueExLong Lib "advapi32.dll" Alias _
"RegQueryValueExA" ( ByVal hKey As Long , ByVal lpValueName As _
String , ByVal lpReserved As Long , lpType As Long , lpData As _
Long , lpcbData As Long ) As Long
Declare Function RegQueryValueExNULL Lib "advapi32.dll" Alias _
"RegQueryValueExA" ( ByVal hKey As Long , ByVal lpValueName As _
String , ByVal lpReserved As Long , lpType As Long , ByVal lpData _
As Long , lpcbData As Long ) As Long
Declare Function RegSetValueExString Lib "advapi32.dll" Alias _
"RegSetValueExA" ( ByVal hKey As Long , ByVal lpValueName As String , _
ByVal Reserved As Long , ByVal dwType As Long , ByVal lpValue As _
String , ByVal cbData As Long ) As Long
Declare Function RegSetValueExLong Lib "advapi32.dll" Alias _
"RegSetValueExA" ( ByVal hKey As Long , ByVal lpValueName As String , _
ByVal Reserved As Long , ByVal dwType As Long , lpValue As Long , _
ByVal cbData As Long ) As Long



http://www.nkitcher.co.uk/ Source Code (abridged) 3-14

Public Sub CreateNewKey(sNewKeyName As String , lPredefinedKey As Long )
Dim hNewKey As Long 'handle to the New key
Dim lRetVal As Long 'result of the RegCreateKeyEx Function

lRetVal = RegCreateKeyEx(lPredefinedKey, sNewKeyName, 0&, _
vbNullString, REG_ OPTION_NON_VOLATILE, KEY_ALL_ACCESS, _
0&, hNewKey, lRetVal)

RegCloseKey (hNewKey)
End Sub
Public Sub SetKeyValue(sKeyName As String , sValueName As String , _
vValueSetting As Variant , lValueType As Long )

Dim lRetVal As Long 'result of the SetValueEx Function
Dim hKey As Long 'handle of open key

'open the specified key
lRetVal = RegOpenKeyEx(HKEY_CURRENT_USER, sKeyName, 0, _

KEY_SET_VALUE, hKey)
lRetVal = SetValueEx(hKey, sValueName, lValueType, vValueSetting)
RegCloseKey (hKey)

End Sub

Public Function SetValueEx( ByVal hKey As Long , sValueName As String , _
lType As Long , vValue As Variant ) As Long

Dim lValue As Long
Dim sValue As String
Select Case lType

Case REG_SZ
sValue = vValue & Chr$(0)
SetValueEx = RegSetValueExString(hKey, sValueName, 0&, _

lType, sValue, Len(sValue))
Case REG_DWORD

lValue = vValue
SetValueEx = RegSetValueExLong(hKey, sValueName, 0&, _

lType, lValue, 4)
End Select

End Function

Function QueryValueEx( ByVal lhKey As Long , ByVal szValueName As _
String , vValue As Variant ) As Long

Dim cch As Long
Dim lrc As Long
Dim lType As Long
Dim lValue As Long
Dim sValue As String

On Error GoTo QueryValueExError

' Determine the size And type of data to be read
lrc = RegQueryValueExNULL(lhKey, szValueName, 0&, lType, 0&, cch)
If lrc <> ERROR_NONE Then Error 5

Select Case lType
' For strings
Case REG_SZ:

sValue = String (cch, 0)

lrc = RegQueryValueExString(lhKey, szValueName, 0&, lType, _
sValue, cch)

If lrc = ERROR_NONE Then
vValue = Left$(sValue, cch - 1)

Else
vValue = Empty

End If
' For DWORDS
Case REG_DWORD:

lrc = RegQueryValueExLong(lhKey, szValueName, 0&, lType, _
lValue, cch)

If lrc = ERROR_NONE Then vValue = lValue
Case Else

'all other data types Not supported
lrc = -1

End Select

QueryValueExExit:
QueryValueEx = lrc
Exit Function



http://www.nkitcher.co.uk/ Source Code (abridged) 3-15

QueryValueExError:
Resume QueryValueExExit

End Function

Public Function QueryValue(sKeyName As String , sValueName As String ) As Variant
Dim lRetVal As Long 'result of the API functions
Dim hKey As Long 'handle of opened key
Dim vValue As Variant 'setting of queried value

lRetVal = RegOpenKeyEx(HKEY_CURRENT_USER, sKeyName, 0, _
KEY_QUERY_VALUE, hKey)

lRetVal = QueryValueEx(hKey, sValueName, vValue)

RegCloseKey (hKey)
QueryValue = vValue

End Function



http://www.nkitcher.co.uk/ Source Code (abridged) 3-16

3.8 SystemMenu

Option Explicit
'
' Function: Custom Menu Functions
'
' Parameters: n/a
'
' Purpose:
' Following code taken from MSDN to allow an "About" menu Option to
be added
' to the system menu As this application Is a dialog based app.
'
' (search For "Intercepting Windows Messages in Visual Basic")
'
Declare Function CallWindowProc Lib "user32" Alias _

"CallWindowProcA" ( ByVal lpPrevWndFunc As Long , _
ByVal hwnd As Long , ByVal Msg As Long , ByVal _
wParam As Long , ByVal lParam As Long ) As Long

Declare Function SetWindowLong Lib "user32" Alias _
"SetWindowLongA" ( ByVal hwnd As Long , ByVal nIndex _
As Long , ByVal dwNewLong As Long ) As Long

Declare Function AppendMenu Lib "user32" Alias _
"AppendMenuA" ( ByVal hMenu As Long , ByVal wFlags _
As Long , ByVal wIDNewItem As Long , ByVal _
lpNewItem As String ) As Long

Declare Function GetSystemMenu Lib "user32" ( ByVal _
hwnd As Long , ByVal bRevert As Long ) As Long

Public Const WM_SYSCOMMAND = &H112
Public Const MF_STRING = &H0
Public Const MF_SEPARATOR = &H800
Public Const SC_NEWMENU = 1
Public Const GWL_WNDPROC = -4
Global lpPrevWndProc As Long
Global gWH As Long

Public Sub hook()
lpPrevWndProc = SetWindowLong(gWH, GWL_WNDPROC, _

AddressOf WindowProc)
End Sub
Public Sub Unhook()

Dim temp As Long
temp = SetWindowLong(gWH, GWL_WNDPROC, lpPrevWndProc)

End Sub
Function WindowProc( ByVal hw As Long , ByVal uMsg As _

Long , ByVal wParam As Long , ByVal lParam As Long ) _
As Long

'We need to trap the WM_SYSCOMMAND message to
'determine when the user has clicked On our
'New menu item. The message Is stored in uMsg.
'Our New menu item Is identified As SC_NEWMENU

If uMsg = WM_SYSCOMMANDThen
Select Case wParam And &HFFFF&

Case SC_NEWMENU
frmAbout.Show vbModal
Unload frmAbout

End Select
End If
'Always call the original handler when done
WindowProc = CallWindowProc(lpPrevWndProc, hw, _

uMsg, wParam, lParam)
End Function


